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Abstract

4hIs study addresses two steps in a process known

as principle components analysis using Mont* Carlo

techniques. An analysis is presented of two popular

dimensionality assessment techniques, Kaiser's

criterion and Catell's Scree test. The factor

interpretation issue is addressed through a regression

study in which the grand mean square error between

population and sample factor loading matrices is

predicted. The notion of a complexity index is also

i ntroduced 7
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Introducti on

Background

Factor analysis is a widely used multivariate data

analysis technique. This technique allows an analyst to

investigate the underlying structure of a set of

variables over which data has been gathered.

Factor analysis has seen its most concentrated

application in the behavioral sciences. Even though the

methods and models of factor analysis are of a

statistical nature, factor analysis was developed

mainly by psychologists (Joreskog,1979) and as such a

literature search in the area of factor analysis will

j lead one to such journals as Psychometrika and

Psychological Reports.

Objectives of Factor Analysis. One object of

factor analysis is to determine the underlying

dimensionality of a process by finding independent

factors which are highly related to one or more of the

variables in question. The process by which an

investigator determines (via factor analysis) the

dimensionality of a set of data will be called, for

purposes of this report, the dimensionality assessment.

After the dimensionality assessment has been made it

would be desirable to be able to give a simple

interpretation to each of the factors (McNichols.1980).

At this point a process know as rotation is used in an
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attempt to develop a simpler more easily interpretable

solution. go, another objective for the investigator is

to interpret the extracted factors correctly. This

objective will be calledg again for the purposes of

this report, factor interpretation.

Principal Component Analysis. This report will

deal exclusively with a methodology known as principal

components analysis (PCA). Psychologists draw the

following distinctions between factor analysis and

principal components analysis. In factor analysis an

attempt is made to find a certain number of factors,

fewer than the number of variables, such that the

intercorrelations between the variables is reproduced

exactly. In PCA ,independent factors are extracted from

the data until a sufficient proportion of the total

variance exhibited by the data is reproduced by the

factors. Hence, PCA is said to be variance oriented

while factor analysis is said to be correlation

oriented (Joreskog, 1979). For purposes of this report

PCA will be considered a "factor analyticw procedure.

Computational Procedure. The PCA computational

procedure consists of three steps (1) the preparation

of the correlation matrix, (2) the extraction of the

initial factors - from whence a dimensionality

assessment is made (this step is where the investigator

. explores the possibility of data reduction) and (3)

rotation to a ternL. 6. O Ation - a search for simple

It7
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and Interpretable factors (Ni., 1975) (McNichols, 1980).

1. Preparation of the correlaton matrix. To

prepare the correlation matrix the following procedure

is uased. First let n obsevations of some random

variable be given by a nxl vector

Xll

X 21

Thus we have n observations on a single variable. If we

have k such variables we can assemble them in a matrix

such that each column represents n observations on the

k variables. This data matrix, X. is a nxk matrix.

X l ... 0. ..... X in
x2 1

Xn1 .......... Xnk

(Where the subscript I denotes the ith observation and

3



the subscript j denotes the jth variable.)

if each x.. is standardized is. set equal to

xi. -

S.

(where . is the sample mean of the ith variable and s.

is sample standard deviation of the jth variable) and

if the matrix multiplication XTX is performed then the

resultant product is the sample correlation matrix.

2. Extraction of the initial factors. The second

step in the process is to extract the elgenvalues from

XTX. The extracted eigenvalues, when rank ordered, are

the basis for most of the currently popular

dimensionality assessment techniques. Once this

assessment has been made the eigenvectors associated

with the retained eigenvalues are normalized, these

vectors are then multiplied by the square roots of

their respective eigenvalues and assembled in matrix

form. This matrix is called the factor loadings matrix,

this is because each coefficient can be said to

represent a "loading" of that particular variable to

the factor.

3. Rotation to terminal solution. Since the

normalized eigenvectors (or principal components as

they are sometimes called) are by definition mutually

orthogonal, the PCA methodology has, therefore, yields a

4
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basis for the data space whose dimension is less than

or equal to the rank of the correlation matrix. The

loadings matrix , or factor structure matrix, is not

unique. That is to say, the factor structure matrix may

be rotated arbitrarily and will still explain the same

amount of total variance. Rotation schemes have been

developed to nclean up" the factor structure matrix and

hence aid in factor interpretation (McNichols, 1980).

This rotation for interpretation is the third and final

step.

For a more detailed mathematical and statistical

development see (Lawley and Maxwell,1971),

(Harman, 1967), (Harris, 1975).



Problem Statement

One major problem facing an investigator is trying

to determine how many factors to retain.

Unfortunately, the dimensionality assessment procedure

for PCA has not been rigidly defined. Several

alternatives are available to an investigator. These

include the Scree test (catell, 1966), Horn's test

(Horn, 1965), and the "fraction of variance explained"

test (Kaiser, 1960). There does not appear to be

evidence that any one of these is superior to the

others. It would be of interest to determine which

test is the most powerful.

Recent research suggests that factor analytic

procedures can be significantly influenced by sample

size, the number of variables, number of inherent

factors, complexity of the inherent factor structure,

and the interactions between these. The following

questions are raised:

1) To what extent is the dimensionality

assessment biased by these influences? How is the

variance of the dimensionality assessment affected?

2) How is factor interpretation affected by

these influences? More specifically, how is the size

of the mean square error (MSE) (or perhaps RMS error)

of sample loadings affected? Can MIE (or RMS errors)

be reasonably predicted as a function of the

forementioned influences?

6
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3) An investigator beginning a factor analytic

study starts with limited information. Assuming he

knows the correlation matrix of the sample data; is

there some rule of thumb based on the condition number

of this matrix, the number of variables, and the sample

size which might aid him in estimating errors he might

expect in a sample factor loadings matrix?

I
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Review of the literature

Browne (1968) states,"There is no statistical test

of significance for the number of factors applicable to

the principal factor estimates and rules of thumb are

generally used for estimating the number of factors."

It is important to note that factor analysis is

not devoid of statistical inference tools. Cliff and

Hamburger (1967) assert that

The results available from statistical
theory, while useful, leave a large area
where the needs of the investigator are
unsatisfied. The statistical tests for the
number of factors are all tied, naturally
enough, to the repective methods for
estimating factors. Moreover , these methods
of estimation are either computationally
arduous .... or unfamiliar .... Consequently,
they are rarely used and so the statistical
tests are rarely applied. More important than
this is the fact that the number of factors
in a given matrix is only one of the many
concerns of the investigator. He is
interested in a wide variety of statistical
questions, and he is interested in them as
they arise in the methods of factor analysis
currently in use.

Factor analysis is not the only field of
statistics where questions of practical
interest have been too complex or too
difficult to specify mathematically for
analytic solution. In such instances it is
fairly common practice to take the Monte
Carlo approach, in which samples from some
specified population are generated by some
random process."

Tucker (1964) and Linn (1968) used a Monte Carlo

approach to study what Psychologists term pyschometric

error. Psychometric error arises when, say, a given

battery of tests are measuring factors different from

8



those 4actors it was designed to measure.

Tucker's approach entailed the perturbation of

idealized common factor loadings. Tucker constructed

what he called a "formal model". In the formal models

the idealized loadings were changed by random

deviations. Small loadings on over 100 additional

factors were also generated by a random process. In

this test, then, the common factor loadings were

perturbed and this effect was compounded by the

presence of a large number of nuisance factors. This

expanded factor loading matrix was then multiplied by

its transpose to yield a correlation matrix. This

correlation matrix was then factored to yield a factor

loading matrix. This, then, is the factor loading

matrix of what Tucker calls the "simulation model".

Tucker asserts that by comparing the factor loading

matrix of the "formal model" to that of the *simulation

model" one can measure the degree of psychometric error

between the idealized factor structure and the

perturbated factor structure.

Horn (1965) suggested a novel application of the

Monte Carlo procedure to aid in dimensionality

assessment. Horn's procedure is as followsu

1) Given a data matrix of m measurements on n

variables, the sample correlation matrix is prepared

and its eigenvalues are extracted.

23 Generate n samples of m independent

9



observations from a normally distributed population of

random numbers. Prepare this correlation matrix and

extract its eigenvalues. This process is to be repeated

K times to yield K sets of elgenvalues. Each set of

elgenvalues is rank ordc"qd and averages of the largest

elgenvalue, second largest eigenvalue, etc. are

computed across the K sets. (Note that K should be

chosen large enough to ensure a good estimate for the

means).

3) Compare, in rank order, the eigenvalues due

to the real world data with the eigenvalues of the K

randomly generated correlation matrices. Pick the

smallest eigenvalue from the real world data

correlation matrix whose value is larger than its

counterpart from the randomly generated matrices.

Horn argues that this procedure will reduce the

number of factors that would have been retained by,

say, the Guttman (1954) weaker lower bound. (Guttman's

weaker lower bound is more commonly referred to as

Kaiser's criterion. Kaiser (1960) first adapted a

procedure of retaining all factors whose eigenvalues

were all greater than or equal to one.). Horn feels

that too many factors will have been retained by the

other criteria due to the fact that these tests ignore

sampling error and the error which Horn refers to as

least squares Ocapitalization". Least squares

"capitalizationw refers to the fact that, in factor

10



analysis, the first derived factor is constructed in

such a fashion as to take up as much of the variance

present as possible (in the least squares sense) and as

such "capitalizes" on the chance fluctuations in a

particular set of data. Horny then (to use engineering

vernacular), claims that the "real 0 eigenvalues ride

above those eigenvalues due to the inherent "noise" of

the process being investigated. Horn makes no

pretensions, however , as to the validity of his

procedure and essentially presents his rationale as a

rule of Othumbu. Although Horn's reasoning appealed to

this author, experts in the field have not received the

rationale with open arms. Cliff and Hamburger (1967) go

so far as to state that Horn's arguments are purely

"verbal" and present a hypothetical counter example.

The counter example goes as follows suppose the

experimental situation is such that there is a very

large common factor present and a second much smaller

one. The eigenvalue of the large factor may be so large

that all succeeding eigenvalues are much less in

magnitude than one. In the random data we should find

several eigenvalues greater than one (approximately 1/2

of them). Hence, when the eigenvalues comparisions are

made we will only retain the single large factor. So.

in this counter example, Horn's rationale has

underestimated the number of true factors. In defense

of Horny however, one might wonder how important that

11



other small factor was to the analysis, that is to say,

what is the penalty of ignoring such small factors?

Browne (1968) published a lengthy Monte Carlo

study in which he examined the effects that increasing

sample size, and increasing the number of variables

while holding constant the number of factors had on

estimates of factor loadings. Browne compared and

contrasted several factor analytic techniques (PCA was

not analyzed, but a hybrid technique which placed the

communalities on the diagonal of the correlation matrix

was examined). The same population factor matrix was

used throughout his study. This matrix had 16 variables

which loaded on 4 factors with communalities ranging

from .9 to .1. Using a method due to Odel and Feiveson

(1966), random correlation matrices were generated and

factor analyzed using five different techniques. Browne

presents extensive tables which show various attributes

of the sample loadings he obtained. Browne demonstrates

the superiority of of a technique called *maximum

likelihood" to estimate factor loadings. He also

studied the dimensionality assessment problem and found

that although none of the methods proved completely

satisfactory, the decision procedure based on a

sequence of likelihood ratio tests and the criterion of

number of eigenvalues greater than one of the sample

correlation matrix gave the best results of the methods

considered. The other criterion considered was due to

12



Saunders (1960), this technique involves taking, at

each iteration of a factor analytic technique called

Thomson's method (Thomson,1934), the number of positive

eigenvalues greater than the absolute value of the

smallest eigenvalue as a criterion for the number of

factors to be used for the following iteration.

Linn (1968) suggested an approach to the

dimensionality assessment problem which is similar in

spirit to Horn's procedure. Instead of analyzing the

real variables and the randomly generated variables

separately,they are analyzed jointly. In Linn's

procedure k new variables are introduced to the real

data and if there are m observations on each of the

original variablesq m independent observations are

generated for the k new variables. All the observations

across both sets of the variables are then used to

prepare a correlation matrix which is subsequently

factor analyzed. The dimensionality assessment is then

based on those factors which are primarily composed of

real variables. The factors, whose main loadings are

those of the generated variables, are to be discarded,

then, as random factors. Linn (1968) expanded the scope

of his original 1964 study. Linn's 1964 study was

limited by the fact that only two observed matrices

were used and each of these "as based on a sample of

size 80.

Catell (1966) suggests a briefl, easy to apply test

13
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for dimensionality assessment. The test entails simply

graphing the *igenvalue magnitudes versus the factor

number (the factor number, for instances of the factor

corresponding to the largest eigenvalue is 1g the

second largest eigenvalue is 2, etc.). Catell noticed

that often in empirical data a 'break" was exhibited in

the eigenvalus curves. This break, Catell reasoned,

signalled the the beginning of the trivial factors and

started a more gradually sloping linear trend in the

eigenvalue curve which resembled a scree line. A scree

line is the shape that rocks sliding off a hill will

assume at the bottom of the hill. Although this test is

not Mconte Carlo in nature it is mentioned because Horn

(1965) and Linn (1968) both noticed this break in

ei genvalues magnitude.

Hamburger (Cliff and Hamburger,1967) performed a

limited Monte Carlo study to examine the apparent break

in eigenvalue curves. To be more specific, Hamburger

sought to find a break where two adjacently ranked

eigenvalues are sharply different in size while on both

sides of the break the decrease is more gradual. He

reports that when sample sizes as are high as 400, then

using the break in eigenvalue magnitude as a decision

rule for factor retention was flawless (at least for

the matrices examined in the study) and when sample

sizes were reduced to 100 the rule usually gave correct

results. Apparently 4 different simple structure types

I1



were examined over some 160 randomly generated sample

correlation matrices. Hamburger fails to report the

number of population common factors and variables that

were used to generate his sample correlation matrices

and as he points out, "These conclusions are of course

tempered by the fact that results probably depend on

the number and size of common factors and the number of

variables .... U.

Joreskog (1963) studied the sampling errors of

individual loadings on unrotated common factors. He

used a factor analytic technique which he developed in

the 1962-1963 time period (Joreskog,1962,1963). this

procedure is reported to yield factors very similiar in

appearance to those generated by the PCA procedure. In

this particular study Joreskog generated a small number

of sample correlation matrices, under various

conditions, and analyzed various characteristics of

them. Two cases stand out in particular. In one case,

six 20-variable sample correlation matrices were

generated over uncorrelated factors. In three of the

matrices, the factor scores were assumed to be normally

distributed while in the other three matrices the

factor scores were assumed to have a rather strong

skewness. Sample sizes for each set of three

correlation matrices were 100, 200p and 300. When the

sample correlation matrices were factor analyzed to

yield sample factor loading matrices it was found that

15



the root mean square (ris) deviation of sample loadings

to population loadings was somewhat less than 1/0%,

where N is sample size, the approximate standard error

of a zero correlation. There were no consistent

differences reported due to skewness.

A second case showed a sharp contrast to the first

case. The population factor structure chosen for

examination, in this case, was a 10-variable three

factor structure. The structure exhibited perfect

simple structure. Joreskog generated 10 sample

correlation matrices for each of the three sample

sizes. This time the differences between the

population loadings and the sample loadings were very

Spreat. In some samples one or me of the factors

generated could not be confidently matched with

population factors. These errorw decreased slightly as

the sample size was increased.

Joreskog next decided to rotate the previous set

of factors, vi'i a least squares procedure, to its

population structure. The resultant standard errors of

the rotated loadings were quite small; somewhat smaller

than 1/VNW. Also, the sampling errors of non-zero

loadings tended to be smaller than those for zero

loadings, in the same manner that sampling errors for

the Pearson correlation coefficients are proportional

to 1-r* Browne (1968) also observed that the sampling

errors of rotated factor loadings were about the same

16
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as correlation coefficients, of the order 1/ .

Joreskog also looked at the sampling error of

rotated loadings when the factor scores were given from

a rectangular distribution. He found that although the

standard errors of the loadings rose slightly in this

case they remained less than 1/'9 and exhibited the

same proportionality to the magnitude of the original

loadings as found in the normally distributed factor

score cases. This result (coupled with the skewed

factor score distribution results previously mentioned)

suggest that factor analytic methods are reasonably

robust in respect to moderate departures from the

normally distributed factor score assumption.

Hamburger (Cliff and Hamburger, 1967) observed a

bias in the estimates of individual factor loadings.

Hamburger does not state his original factor structure

but he does state that the sample sizes studied were

100 and 400. He noticed that larger loadings (.6 to .9)

were consistently underestimated while the smaller

loadings (.2 to .5) showed a tendency to be

overestimated. Browne's (1968) data exhibited a

similiar trend. The factor anaiytic procedure used for

these cases was PCA with squared multiple correlations

placed on the diagonal of the input correlation natrix.

Cliff and Pennell (1967) studied in some detail

the effects of communalitys factor strength, and

loading size on the sampling characteristics of factor

17



loadings. The sampling characteristics addressed in

this study were referred to as "stability" and "bias".

Stability refers to the amount of variability an

individual factor loading might be expected to exhibit

from sample to sample. Bias refers to the extent to

which the mean of a sampling distribution of factor

loadings might be expected to approximate the

population loading.

Two model population factor structures were

studied. Each factor structure was constructed with

four different factor strengths, four different

communalities, and four different loading sizes. The

loadings were situated in such a fashion to facilitate

various comparisons. For instance, by choosing selected

loadings, it was possible to compare the effect of

factor strength on given loadings of equal magnitude

and communa~ity. The loadings of the first model

structure ranged from .9 to .45, while the seccnd's

loadings ranged from .7 to .35. Fifty sample

correlation matrices were generated for each of the

model structures. The sample sizes were not given.

These matrices were factor analyzed by the PCA

procedure with communalities placed on the diagonal.

Four factors were extracted and the resultant structure

was rotated, via a least squares procedure due to Cliff

(1966), to fit the model structure. The means and

standard deviations of the individual factors were

18



calculated over the 50 sample structures. Individual

factor loadings exhibited a wide variety of sample

frequency distributions.

Several interesting influences affecting stability

were noted. A non-zero loading which was associated

with a large communality was almost always associated

with smaller standard deviations then those loadings

associated with smaller communalities. A simillar trend

was noticed for zero loadings. It was also noticed that

the larger a loading was, the smaller its standard

deviation tended to be. The trends were presented quite

clearly in graphs in the text of the article. The

authors further noticed that stronger factors tend to

produce more stable loadings, apparently independent of

the other parameters.

Cliff and Pennel next summarized these

observations in a multiple regression study. The

dependent variable was the standard deviation of the

factor loadings. There were 7 independent variablesst

1. Size of population factor loading
2. Population communality of the variable
3. Number of non-zero loadings on the factor
4. Number of non-zero loading on the variable
5. Squared loading on the factor
6. Discrepancy between loading and other loadings

on the factor
7. Mean loading on the factor

The correlation matrix was prepared and

correlations of the order .10 were noted for predictors

1,2,5,7. Using a stepwise regression routine it was
19

I



found that six of the variables could account for

nearly 89Z of the variance present. The best two

predictors were 6 and 7 which together explained 86% of

the variance. The authors, however, point that

predictor pairs 2 and 5 or 2 and 7 give ras of .842 and

.843 respectively. No power transformations or

interactions were tested. The authors also report

instances of bias in the sample factor loading matrix

but do not attempt to characterize it.

Cliff and Pennell summarize by concluding

"...that communality rather than loading size
is the important determiner of
stability... Higher communalities mean not
only greater stability for the loadings of
specific tests (variables) but also load to
stronger factors which mean that the
stability of all the loadings is improved."

Cliff and Pennell did not address sample size and

its possible interaction with other effects. Also the

number of variables and factors were not varied.

Pennell (1968) extended the study by looking at

the influences of communality and N (N is the sample

size used to generate sample correlation coefficients)

on the sampling distributions of factor loadings.

Pennell inserted variables with different communalities

in randomly constructed factor structures. Samples were

drawn from the population correlation matrix to prepare

a sample correlation matrix. The sample correlation

matrix was then factor analyzed using PCA with squared

multiple correlations on the diagonals. As in Cliff and
20
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Pannell's 1967 study, the standard deviation of the

factor loading was taken to be the dependent variable.

Pennel noticed in the 1967 study that univocal

variables (variables which load on a single factor) not

only facilitated rotation and subsequent factor

interpretation but also resulted in smaller sampling

errors. Further it was noticed that zero loadings seem

to exhibit a greater degree of variability than a

non-zero loadings. Pennell hypothesised that the

variability of a loading might increase with its

complexity across the factors. To avoid the confounding

of error in complex variables Pennell used only

univocal tests inserted in randomly constructed factor

structures.

The research design chosen was a two way analysis

of variance with 5 levels of the two independent

variables, N and communality. The levels of N were

taken as 100, 150, 300, 600, and 2500. The levels of

communality were taken as .1, .3, .5, .7 and .9. for

the test variables. The test variables were inserted

into a randomly constructed, 12 variable by 2 factor,

population structure (The test variable's position in

the structure was also determined in a random fashion.)

Three such random structures were generated for each of

the AMNOVA's 25 cells. These 75 structures then were

used to generate 100 sample correlation matrices. Theme

correlation matrices were then factor analyzed in the
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fashion previously mentioned and rotated via Cliff's

(1966) procedure back to the population factor

structure. The standard deviations of the zero and

non-zero sample correlation matrices were calculated

for both blocks of correlation matrices. Hence each

cell of the ANOVA contained three replications of

sample standard deviations. The subsequent fixed

effects, two way ANOVA revealed that both main effects

and their interactions were significant. This was true

for both non-zero and zero loadings. It was noticed

that while the F ratio for N remained approximately the

same for both non-zero and zero loadings, the F ratio

due to communality was strongest for non-zero loadings.

Graphs were drawn that depicted the standard

deviations (non-zero loadings) of the various test

variables as functions of 11A. The results were

striking, in all but one case, clear linear trends were

observed. It was also clear from the graphs that the

standard deviations were conditional on the magnitude

of the variable's communality. Similar trends were

observed for zero loadings although differences due to

communalities were harder to discern.

Pannell asserts that his study has demonstrated

clearly the advantage of developing factor pure

(univocal) variables for studies of psychological

traits, because these variables exhibit the smallest

amount of sampling errors in the non-zero loadings (the
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loading usually of most interest.)

Pennel presents tables which define 95% confidence

intervals about the zero loadings as a function of N.

These tables graphically refute the rule of thumb that

selects only loadings greater than .3 as being

significant. This author reminds the reader that a

"forced fit" rotation scheme was employed to generate

these values and as such the values in the table arise

when the correct structure is known, a priori, and the

sample loading structure is rotated to fit it. Hence

errors here are due to the factor analytic method and

sampling errors. Obviously, investigators may imploy

factor analytic and rotation schemes which will produce

effects other than those due only to sampling error.

Pennell closes his paper with an interesting table in

which he shows the size of sample loadings necessary to

be significately different from the non-zero loadings

he tested (.9, .8, .7, .6, .5) at an alpha of .05. For

example, when N is 100, a sample loading would have to

be less than .79 to reject the hypothesis that it was

actually .90.

Manners and Brush (1979) studied the "reliability"

of factor analytic techniques. Reliability is defined

as (a) the mean squared error between factor loadings

for sample and population factor loading structures and

(b) the ability of a factor analytic model to capture

correctly the number of factors in the population. The

23



research endeavored to compare the reliability of four

separate factor analytic techniques with respect to the

effects of sample size, number of variables, and number

of factors. An analysis of variance approach was usd

where the treatments were taken as a) the number of

variables, b) the number of observations (observations

on the variables), and c) the four different factor

analytic models. All possible interactions were also

examined.

The experimental procedure called for use of a

factor structure due to Browne (1968). This structure

was divided into two experimental conditions; the first

was 16 variables and 4 factors and the second was 12

variables with the same 4 factors. (The reader should

note that factors XZ and ZI in Browne's structure are

not orthogonal. The angle between these factors is

aproximately 77 degrees. Since only an orthogonal

rotation was used in the analysis, one wonders why

Browne did not employ only mutually orthogonal

factors.) Ten random correlation matrices were

generated from each of the experimental population

factor loading structures for sample observation sizes

of NI0 and N=500, respectively. Hence 10 times 2

times 2 - 40 sample correlation matrices were factor

analyzed by the four differnent techniques. The four

different techniques included PCA with initial

communality estimates placed on the diagonal.
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Three dimensionality assessment rules were tested

for the hybrid PCA technique. The first two rules were

to choose the number of factors associated with the

sigenvalues of magnitude greater than 1 and 0.

respectively. Saunder's method which was mentioned

earlier in the literature review, was also tested. For

the eigenvalues greater that 1 rule, 28Z of the

dimensionality assessments were correct. The remaining

assessments were within 2 factors of being correct with

35% predicting 3 factors and 37% predicting 2 factors.

The eigenvalues greater than 0 rule was within one

factor for 45% of the assessments and high for the

rest, and the variance was much larger for this rule

than the eigenvalues greater than 1 rule.

Zn the fixed effects ANOVA experiment each cell

contained 10 replications of mean square loading errors

(10 correlation matrices for each cell; 4 (models)

times 2 (sample sizes) times 2 (* of variables) = 16

cells). All the treatments and treatment interactions

proved significant (alpha=.05), save the interaction

between number of variables and number of observations.

To summarize; Manners and Bush provide evidence

that factor analytic reliability is influenced by

1) The specific factor analytic models chosen.
2) The interaction of factor analytic model

choice and number of variables.
3) The interaction of factor analytic model

choice and sample size.
4) The interaction of factor analytic model

choicep sample size and number of variables.
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In passing, one also notes that all the main

treatments: variables, observations, and models were

significant. Sampling error decreased as observations

increased. Sampling error also decreased as the number

of variables increased, much as is observed In multiple

regresion analysis.

This ends the literature review section dealing

with Monte Carlo experimental work in factor analysis.

The following paragraphs present a brief overview of

recent literature which is related either to the/

research in this report or the factor analysis problem

in general.

The rotational scheme used in this report is due

to Schoneman (1966). This rotational procedure allows

one to rotate a sample factor loadings matrix to given

target matrix (usually the hypothesized population

factor loadings matrix). The rotation is accomplished

in such a manner as to minimize, in a least squares

sense, the residual differences between the rotated

matrix and its target.

Odell and Feiveson (1966) provide the methodology

by which all the reviewed studies generated sample

values from multinormal populations with given

covariance structures. An algorithm for the bivariate

normal is given by Naylor (1966).

A mathematical entity known as the condition

number of a matrix is used in this report. The
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condition number of a matrix is an especially useful

tool in systems of linear equations. If small errors in

the right-hand side or coefficients of a linear system

produce a large effect on the solution, then the system

of equations is said to be ill-conditioned. The

condition number of a matrix serves as an index of this

ill-conditioning. The condition number of a matrix is

given by the absolute value of the ratio of that

matrix's largest eigenvalue to its smallest. Westlake

(1968) offers a clearly written text on the application

of the condition number and other measures as applied

to matrix inversion and linear equations. Belsley, et

al. (1980) discuss the effects of ill conditioning by

applying the condition number in detecting collinearity

in multiple regression.

Anderson (1958) is recommended for rigorous yet

succinct theoretical treatment of PCA. Joreskog (1979)

offers a novel introduction to factor analysis and its

associated vernacular using the concept of partial

correlations as a starting point. The second paper in

the book deals with statistical tests for confirmatory

factor analysis, the only such statistical tests this

author was able to find. Also there is an interesting

article by Catell and Sullivan (1962) In which the

concepts of factor analysis arm made clearer to the

novice through the use of a physical example using cups

of coffee.
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Objectives of the Research

The objectives of this research effort were the

following:

1) Develop software which will allow a user to

study the Influences of sample size, number of

variables, number of factors, and complexity of the

factor structure in PCA. This software was to allow a

user to input either a particular structure or given

covari ance matrix.

2) Address the three questions raised in the

problem statement.

3) Summarize recent developments in this area as

found during a literature search.

28
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Scope of the Research

Dimensionality Assessment. Kaiser's criterion and

the Scree test are the two dimensionality assessment

procedures to be addressed in this report. These two

procedures appear to be the most popular. It was also

felt that testing Horn's procedure on the CDC 6000

would prove cost prohibitive.

Factor Interpretation. This report did not treat

the problem of selecting the most appropriate

rotational technique. This report assumes that the

correct rotational scheme is applied. This report

attempts to provide a tool by which investigators can

estimate the magnitude of factor loading errors to be

incurred under various experimental conditions. In

particular, sample sizes were taken from the range

10-100, the number of variables ranged 10-15, the

number of factors ranged from 3-6. In total 27 separate

population structures were examined. Each structure was

examined at sample sizes of 10, 25, 50, 100.

29
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Approach to the Research

The research design used in this report was as

follows: Initially, seven 10 variables by 3 factors

structures were examined. These structures will be

referred to as the "original" structures. The original

structures are given in figure 1. These original

structures are the lower left hand point in the graph

of the research design given in figure 2, with

coordinate (3,10). Next, four of the original

structures were selected to be perturbed by the

presence of added nuisance variables. These structures

are given in figure 3. Five and two nuisance variables

were added to these structures, respectively. The

nuisance variables were chosen to load on single

factors and have communalities between .01 and .09.

These eight structures are coordinates (3,15) and

(3,12) on the research design graph. The coordinates

(4,10) and (6,10) consist of three structures each,

perturbed by the presence of one and three nuisance

factors. The nuisance factors were constructed such

that all factors were orthogonal (save factors IV and VI

in structure 17, they form an angle of approximately 74

degrees, as it turned out this discrepancy was

insignificant, as in Browne's (1968) structure). Them-

structures are given in figure 4. To complete the

design the same three structures were perturbed by both

nuisance variables and factors. These structures are
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1 2 3 4

1 0 0 .9 0 0 .8 0 0 .7 0 0
0 1 0 0 .9 0 0 .8 0 0 .7 0
0 0 1 0 0 .9 0 0 .8 0 0 .7
1 00 .9 0 0 .8 0 0 .7 0 0
0 1 0 0 .9 0 0 .8 0 0 .7 0
0 0 1 0 0 .9 0 0 .8 0 0 .7
1 0 0 .9 0 0 .8 0 0 .7 0 0
0 1 0 0 .9 0 0 .8 0 0 .7 0
0 0 1 0 0 .9 0 0 .8 0 0 .7
1 0 0 .9 0 0 .8 0 0 .7 0 0

5 6 7

.9 0 0 .7 .7 0 .7 .7 0
0 .8 0 77 .7 0 '7 .7 0
0 0 .7 0 0 .9 0 0 .6

.6 0 0 .8 0 0 .5 0 0
0 .5 0 0 .8 0 0 .4 0
0 0 .4 0 0 .7 0 0 .3

.3 0 0 .6 0 0 .6 0 0
0 .2 0 0 .7 77 0 .7 .7
0 0 .7 0 .7 .7 0 .7:7

.7 0 0 .7 0 0 .7 0 0

Figure 1. Original Factor Structures
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8 9 10 it

1 0 0 .9 0 0 .7 .7 0 .8 0 0
0 1 0 0 .9 0 -7 .7 0 0 .8 0
0 0 1 0 0 .9 0 0 .9 0 0 .8
1 0 0 .9 0 0 .8 0 0 .8 0 0
o 1 0 0 .9 0 0 .8 0 0 .8 0
0 0 1 0 0 .9 0 0 .7 0 0 .8
1 0 0 .9 0 0 .6 0 0 .8 0 0
0 1 0 0 .9 0 0 .7:-7 0 .8 0
0 0 1 0 0 .9 0 .7 .7 0 0 .8
1 0 0 .9 0 0 .7 0 0 .8 0 0
0 .2 0 0 .2 0 0 .2 0 0 .2 0
0 0 .1 0 0 .1 0 0 .1 0 0 .1

.3 0 0 .3 0 0 .3 0 0 .3 0 0
0 .2 0 0 .2 0 0 .2 0 0 .2 0
0 0 .1 0 0 .1 0 0 .1 0 0 .1

12 13 14 15

1 0 0 .9 0 0 .7 .7 0 .8 0 0
0 1 0 0 .9 0 ":7 .7 0 0 .8 0
0 0 1 0 0 .9 0 0 .9 0 0 .8
1 0 0 .9 0 0 .8 0 0 .6 0 0
0 1 0 0 .9 0 0 .8 0 0 .8 0
0 0 1 0 0 .9 0 0 .7 0 0 .8
1 0 0 .9 0 0 .6 0 0 .8 0 0
0 1 0 0 .9 0 0 .7 "7 0 .8 0
0 0 1 0 0 .9 0 .7 .7 0 0 .8
1 0 0 .9 0 0 .7 0 0 .8 0 0
0 .2 0 0 .2 0 0 .2 0 0 .2 0
0 0 .2 0 0 .2 0 0 .2 0 0 .2

Figure 3. 'Perturbed Factor Structuress Nuisance Variables
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16 17 Ia

9 0 0.2 00 . .7 0 0 0 0 .8 0 0.2 0 0
*.9 ) 0.2 0 .7.7 0 4 0 00 .900.2 0
0 .9 0 0.2 0 0.9 0 .2 0 0 0.0 0 0.2

.1 0 0-2 0 0 .8 0 0.15 0 -.14 .8 0 0 0 0 0
0.9 0 0-2 0 0.8 0 0 0 0 0.9 012 0 0
0 0.9 0 0".2 0 0.7 0 .257 0 0 0.0 0"T2 0

.9 4 4 0 0 0 .6 0 0.2 0 .0105 .8 0 00 0:2
0.9 0 a 0 0 0.7.7 0 0 0 0.9 0 0 0 0
0 0.9 0 0 0 0.7.7 0 0 0 0 0.0 0 0 0
.9 0 0 0 0 0 .7 0 0 0 0 .25 .8 0 0 0 0 0

19 20 21

.9 0 0.2 .7.7 0 0 .8 0 0.2
0.9 0 0 17.7 0 0 0.8 0 0
00.9 0 00.9.2 0 0.8 0

.9 0 02 .8 0 0 0 .8 0 0-.2
0.9 0 0 0.8 0 0 0.8 0 0
0 0 .9 0 0 0 .7-.257 0 0 .8 0

.9 0 0 0 .6 0 0 0 .6 0 0 0
0.9 0 0 0.7-.7 0 0.8 0 0
0 0.9 0 0.7,7 0 0 0.8 0

.9 0 0 0 .7 0 0 0 .6 0 0 0

Figure 4. Perturbed Factor Structurems
Nt isance Factors
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22 24

.9 0 0.2 0 0 .7.7 0 0 0 0 .8 0 0.2 0 0
0.9 0 0.2 0 .7.7 0 0 0 0 0.80 0 .2 0
0 0.9 0 0.2 00.90 .2 0 00.600.2

.9 0 0.2 0 0 .8 0 0.15 0 .14 .6 0 0 0 0 0
0.9 0 0.2 0 0. 0 0 0 0 0.30 .2 0 0
0 0.9 0 0.2 0 0.7 0 .257 0 0 0.8 0.2 0
.9 0 0 0 0 0 .6 0 0.2 0 .010 .0 0 0 0 0.2
0.9 0 0 0 0 0 .7.700 0 0.0000
00.900 0 0 .7.700 0 00.8000

.9 00000 .7 0 0 0 0 .25 .800000
0.200.30 0.2 0 0 0 0 0.2 0 0.3 0
0 0.1 0 0 0 00.1 0 0 0 0 0.1 0 0 0
.3 0 0 0 0 0 .3 0 0 0 0 0 .3 0 0 0 0 0
0.2 0 0.3 0 0.2 0 0 .3 0 0.2 0 0.3 0
0 0.1 0 0 0 00.1 0 0 0 0 0.1 0 0 0

25 26 27

.9 0 0.2 .7.7 0 0 .8 0 0.2
0.9 0 0 .7.7 0 0 0.800
0 0.9 0 0 0.90 0 0.6 0

.9 0 0.2 .8 0 0 0 .90 0 .2
0.90 0 0.9 0 0 0.8 0 0
00.9.05 0 0.7.0643 0 0.8.0563
.9 0 0 0 .6 0 0 0 .8 0 0 0
0.900 0.7.70 0.900
00.9 0 0.7.70 00.90

.9 0 0 0 .7 0 0 0 .8 0 0 0
0.20 0 0.200 0.200
0 0.2.225 0 0.2.225 0 0.2.25

Figure 5. Perturbed Factor Structuresl
Nuisance Factors and Variables
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given in figure 5. These structures are coordinates

(4,12) and (6,15) in the research design graph.

Each of the 27 structures were examined over

sample sizes of 10,25,50, and 100. These sample sires

are considerablely lower than those used in the

reviewed studiesa 100 and 400 were used by Hamburger

(1967), Joreskog (1963) used 100,200, and 300, Cliff

and Pennell (1968) used 1009150,300,600, and 2500,

while Manners and Brush (1979) used 100 and 500. These

studies reported that experimental results were, in

general, only moderately improved by increasing sample

size. Therefore, it was thought that the lower sample

sizes would provide not only more interesting results

but shed some light on just how many samples are

required to perform an accurate PCA in the given

experimental region.

Each structure and sample size combination was

analyzed according the following experimental

procedure.

1) A population covariance matrix was formed by

multiplying the population structure matrix by its

transpose.

2) The appropriate number of sample vectors were

drawn randomly from the population covariance matrix.

3) The sample vectors were then used to form a

sample correlation matrix. The condition number of

this matrix was calculated at this step.
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4) The sample correlation matrix was then factor

analyzed by the PCA procedure. The correct number of

factors were retained. Dimensionality assessment

statistics were collected at this step.

5) A factor loadings matrix was prepared and

rotated via a least squares procedure due to Schoneman

(1966) back to the original population structure. The

mean square deviation of sample loadings from

population loadings was calculated at this step.

6) Steps 2-5 were repeated 1000 times for each

structure-sample size combination.
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Complications in a Population Structure

Rationale. One difficulty in a study such as this

is in determining what structures should be examined.

The limited experience of this author indicates that

usimplew structures, whose variables load on no more

than a few factors and which contain many zeros, are

probably of the greatest use. This intuitive feel is

merely a vague generalization of Thurstones criteria

(see Harman, 1967, pg. 98) which is widely accepted as

a desirable quality of a population structure. In any

event, more "complicated" structures may be very

difficult, if not impossible, to give any meaningful

interpretation to.

Once one has decided to use these simple

structures one might wish to study several such

structures. The question arises, how does one compare

different factor structures? It stands to reason that

a perfect, simple population structure (all ones for

loadings with each variable loading on a single factor)

will be easier to detect from sample data than a

structure with low factor loadings and variables which

load on more than one variable. Here the second

structure could be said to be more complicated than the

first. It would be desirable to have an index number

which could be derived from a given structure. This

index number should grow in magnitude as a structure

becomes increasingly complicated. One such candidate

38



is the average uniqueness of the structure. Pannell

(1968) rejects such a measure because it does not take

into account the fact that variables of equal

communality may load on differing numbers of factors.

A given factor structure is said to be more

complicated than another if the first factor structure

is harder to glean from experimental data than the

second. The following is a proposed index for the

complexity of a population structure.

Complexity Index. It was reasoned that

complications in a given structure are due to two

components:

1) Complication due to structure - if

manisfestation variables load on single variables then

a simple structure exists. As the manisfestation

variables load significantly on more than one factor

the complexity of the structure increases.

2) Complication due to Uniqueness - if

manisfestation variables demonstrate high communalities

across the factors (low uniqueness) then there is a

higher chance of closely reproducing this factor

structure than that of another structure with higher

uniqueness.
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Let the complexity index be defined by the

quantitys

M N J-1" M
,E (aka)2 ( h

i=1j ik i.+

M )

where the Ai are factor loadings in the ijth position.

N is the number of factors, and M is the number of

variables. The Hi are the communalities of the ith row

of the factor structure matrix.

The first term is the complexity due to structure.

The second term is the complexity of the structure due

to uniqueness.

The second term is simply the average uniqueness of

the structure. As the average uniqueness grows the

complexity grows. This term is bounded by 0 and 1.

The first term is the quartimax criterion divided

by the number of variables, M. The quartimax criterion

is minimized at 0 when perfect simple structure is

present. As variables start to load on more than one

factor this quantity grows. In order for this quantity

to be useful as a component of an index it has to be

bounded. The lower bound Is zero. The upper bound can

be found if the following maximization problem can be

solved.
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MAXIMI ZE
M N J-1

i=1 j=2 k=1

SUCH THAT

1) laij i 1 i Vi = V,...vM, Vj =

N
2) (aik) 2  1 Vi=1,..,M

k=1

M

3) aikaij = 0 Vk / j

The first constraint merely requires the loadings

to be less than or equal to unity. The second

constraint requires each variable's communality to be

less than or equal to unity. The third constraint

reflects the mutual orthogonality of the factors.

If only the first constraint is taken to be

binding an upper bound of

can be established by setting all the elements in the

matrix to 1.

If we require both the first and second constraint

to be binding then.
M N J-1 M N N

E E (aikaij) 2 9 E FF (aik) (aj 2
SJ=2 k=1 i=1 J=2 k=1

41
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and

M N N M N N

, (a ik)2 (aij) 1 , (a.j)2 (aik)
• j=2 k=1 i=1 j=2 k=1

and

M N N M N
"= (a=2 (aik ) (a.i.) 2 1

similarly--

M N 2M

~(a~. 2 1s1
(= j=2 i=1

hence M also acts as a weak upper bound.

This author was not able to determine a upper

bound with the third constraint binding.

To summarize, the above index is submitted as a

possible candidate to compare differing structures for

inherent complexity. This index does not attempt to

account for the possible influence due to the ratio of

the number of variables to the number of factors.- In

light of this fact, comparisons in this report using

the complexity index are only done across structures

with the variable to factor ratio held constant. Two

other points should be noted. First, a weak upper

bound is used to normalize the structural complexity

term. Undoubtedly a stronger upper bound computed with

the third constraint binding would lead to a stronger
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index. Secondly, it was assumed that the weights on

the two terms were equal. This assumption implies that

complexity is equally attributed to structure and

uniqueness. If the index proves promising, perhaps

future regression studies could address this issue.

I 4
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Dimensionality Assessment Analysis

The two dimensionality assessment techniques

addressed in this section are Kaiser's criterion and

Catelh's scree test.

Kaiser's criterion is to merely retain all factors

whose associated eigenvalues ae greater than or equal

to 1. Catell's scree test is a graphical technique in

which an investigator looks for a break in a plot of

rank ordered eigenvalues. This section does not

attempt to make statistical statements about these

techniques.

Kaiser's Criterion. For all the structures

examined in this study, all dimensionality assessments

based on Kaiser's criterion were within two factors of

being correct. This is probably attributed to the

structurally "clean" sampling populations studied and

the low factor to variable ratios used. Most

dimensionality assessments were, in fact, within one

factor of being correct.

Histograms of dimensionality assessments due to

Kaiser's criterion are given in figure 6 for structures

1,3, and 7. The correct dimensionality for each

structure is 3. Each histogram contains a total of

1000 dimensionality assessments. Note that the

variability in the dimensionality assesments is

markedly larger in structure 7 than in structure 3.

Although the percentage difference in average
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N 100

[1~ N=25

N- 10

2 34 2 34 2 34 5

Structures 1 7

Avg. Com.. 1.0 .64 .563

Coaplexityl 0 .36 .533

Figure 6. Dimmsionality Agsssment Histograms

using Kaiser's Criterion
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communality is only about 14%, the percentage

difference in the complexity index is 48%. No solid

conclusions can be drawn at this point, but at least

one notices that the complexity index is moving in the

right direction.

In figure 7 histograms are presented for structure

23. This structure is perturbed by 3 nuisance

variables and 3 nuisance factors. It is one of the

more complicated structures stuidied in this report.

Although, in an absolute sense there are 6 inherent

population factor. to this structure, 3 of these

factors account for less than 3% of the total variance

which could be explained by this structure. As can be

seen in the histograms a dimensionality assessment of 3

was never made. Clearly the addition of nuisance

factors and variables can impact dimensionality

assessments via Kaiser's criterion. However, for the

structures studied here, one can expect to be within 2

factors of the true dimensionality. To this author,

Kaiser's criterion seems to be a good rule for thumb

for dimensionality assessment.

Catell's Scree Test. Since this test is graphical

in nature, it was very difficult to conceive of a

method to apply Mr e Carlo techniques to its analysis.

Clearly, one could not hope to examine a thousand

graphs visually within a limited time period.

Catell's scree test is a graphical technique used
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N-100

N=50

N-25

N= 10

Structure: 23

Avg. Comm.z .532

Complexityi .542

Figure 7. Dimensionality Assesment Histogram

4?



to visually locate the hypothesized break in ranked

elgenvalue magnitudes which should occur Just before

that eigenvalue which is associated with the correct

dimensionality. The Scree test is explained in the

literature review section of this thesis.

Catell would have an investigator retain factors

down to and including the factor which begins his scree

line. To test this procedure the following approach

was taken. If the scree test is an acceptable

procedure then certainly one would expect the method to

work well under ideal conditions. An ideal condition

for an investigator would occur if he were sampling

from a population like structure 1. Figures 8,9,10,

and 11 are Catell's scree test for sample sizes

10,25,50, and 100 respectively for structure 1. Each

plotted point is the mean of the ith ranked eigenvalue

over 1000 trials at the particular sample size.

Approximate 95% confidence intervals are provided for

the means of the eigenvalues at the correct

dimensionality (3, in this case) and I plus the correct

dimensionality. Note in figure 8 that there is no

apparent break in the means of the ranked eigenvalues.

This situation improves markedly as the sample size

increases, figures 9,10, and 11. Notice in figure 11

that a definite break in magnitude is present between

elgenvalues 3 and 4. Further, notice that the

confidence intervals for the two sigenvalues do not
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overlap. If one were to apply Cate11's screw test to

the means of these eigenvalues, clearly, one would

retain 4 factors. Thus, when sampling is accomplished

under even ideal conditions Catell's test has yielded

incorrect results. In fairness to Cate11, however,

figure 11 could be said to exhibit what Cate1 refers

to as a double scree line. Cate11's procedure is

modified when a double scree line is observed. Factors

are retained down to and including the factor which

begins the upper scree line. Under this modification

the correct number of factors would be retained.

Notice that Kaiser's criterion was a flawless indicator

for structure 1 and N=200. Figure 12 is another ranked

mean eigenvalue graph. This time structure 23 provides

the data. The sample size is 100. Structure 23 has 3

nuisance factors and 3 nuisance variables. Notice that

the same break occurs between the mean of the

eigenvalue magnitudes of factor numbers 3 and 4. This

time, however, the confidence intervals are quite wide

and overlap. It is not clear whether or not a break in

the eigenvalues will even appear in a particular

sample.
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Factor Interpretation Analysis

This section presents the results of a regression

study undertaken to determine if the sampling errors of

the experimental region were predictable.

Experimental Procedure. To reiterate the

experimental procedure, first sample vectors were

generated from the population covariance matrices.

These sample vectors were then used to form a sample

correlation matrix. The sample correlation matrix was

factor analyzed using the PCA procedure and the

resultant factor loadings matrix (of the correct

dimensionality) was then rotated, via a least squares

procedure, to fit the original population structure.

The mean square discrepancy between the sample loadings

matrix and the population loadings matrix was then

calculated. This mean square error was calculated

across all the loadings. The mean square error (MSE)

is calculated by the formula

N M 2

j=l i=1
M-N

where the aij are the factor loadings for the

population factor loadings matrix, a1 j are the factor

loadings for the sample factor loadings matrix, H is

the number of variables, and N is the number of
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factors. The root mean square (RMS) error Is taken as

the square root of the RSE.

Performance of the Complexity Index. Figure 13 is

a plot of MSE versus the average communalittes of the

original structures. Notice how structures 6 and 7

produce noticable "bumps" in the set of curves. These

two structures have four variables which load

significantly on more than one factor. All the other

structures used in figure 13 contained only univocal

variables. One would expect small bumps due to

sampling fluctuations but the aberration due to

structure 7 seems a bit severe. Figure 14 is a plot of

MSE versus the complexity index. This graph displays

more of the monotonicity one would expect. A similiar

graph is presented for the more complicated structures

which are perturbed by nuisance factors and variables.

In this graph one notices that there are two pairs of

structures whose complexity indices are quite close.

In all but one case the corresponding MSEs were quite

close. The exception occurs for structures 26 and 27.

The variance of these MSE values are of the order

.00001 and so it seems clear this particular variation

is not due to sampling error. It is probably due to

one of the complexity index's inherent weaknesses as

mentioned previously. All in all the index seems to be

performing fairly "ell. At least the complexity index

is an improvement over using average communality (or
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uniqueness) as a criterion of a population structure's

complexity.

Regression Study. Several different regression

models were hypothesized and tested in order to

determine if MSE or RMS errors could be reasonably

predicted as functions of sample size, the number of

variables, the number of inherent factors, complexity

of the population structure and the interactions

between these. The condition number of the sample

correlation matrix was also examined for its possible

aid in predicting MSE or RMS errors. In these studies

each MSE or RMS value was taken as the grand mean of

1000 iterations on a particular structure-sample size

combination. The same, then, is true for each sample

condition number. Two types of regression models were

attempted.

1) Linear models with interactions--these models
were run using the Statistical Package for the Social
sciences (.SPSS) (Nie, 1975). A stepwise regression
scheme was employed for variable selection. The
following models were run:

a) MSE as a linear function of sample size,
number of factors, number of variables, and all possibe
multiplicative interaction combinations. This model
was also ran with RMS as the dependent variable.

b) MSE as a linear function of sample size,
number of factors, number of variables, complexity
index of the population structure, and all possible
multiplicative interaction combinations. This model
was also ran with RMS as the dependent variable.

c) MSE as a linear function of sample size,
number of factors, number of variables, condition
number of the sample correlation matrix, and all
possible multiplicative interaction combinations. This
model was also ran with RMS as the dependent variable.

2) Nonlinear models-These models were also run
on SPSS. Nonlinear production functions of the
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Cobb-Douglas type (Nicholson, 1978) were run over
various combinations. The Cobb-Douglas type function
was chosen because preceived nonlinearities which were
*eyeballed" in the data. Also, the Cobb-Douglas
function is flexible in the sense that it can mold
Itself to many different shapes. The Cobb-Douglas
function is of the form

Y = B X B, XBt *XB

The following models were run:
a) RMS with independent variables: sample

size, number of factors, and number of variables.
b) RMS with independent variables: sample

size, number of factors, number of variables, and
complexity index of the population structure.

c) RMS with independent variables: sample
size, number of factors, number of variables, and
condition number of the sample correlation matrix.

The following are used as abbreviations:

1) Sample size--N
2) Number of factors-FAC or F
3) Number of varablec%-VAR or V
4) Complexity Itd -x-"
5) Condition wiumb&r--K
6) Interact ons--an emijaple is NxF or sample

size * number of factors

Figure 16 is a tabular comparison of the results

from the linear models. Note that the best predictions

are made from the model which includes the mean

condition number of the sample correlation matrices.

Note that sample size is the most significant

independent variable in all the models. It is

interesting to note that the addition of the complexity

index into the first two models, although only

improving the model's predictability slightly, creates

a situation wherein the second most significant

independent variable is a interaction term on the

complexity index. The coefficients of the predicitive
61
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Dependent Var NSE RNS NSE iNS USE iNS

Independent Var N, VAR, N, VAR, N, VAR, N, VAR, N, VAR, N, VAR,
FAC, FAC, FAC, C, FAC, C, FAC, K, FAC, K,
INTERACT INTERACT INTERACT INTERACT INTERACT INTERACT

Multiple R .47069 .59562 .47471 .62273 .72166 .76580
Adjusted Ra .45966 .58285 .46376 .60244 .70671 .75321

Overall F 42.68424 46.64277 43.37727 30.70097 48.228 60.818398
Significance .000 .000 .000 .000 .000 .000

Final Variables
il Model N N N N VXK N
F Ratio, Signif 80.9, .000 70.6, .000 81.38, .000 44.72, .000 27.9, .000 62.51, .000

VAR NxFxV Cxy NxFxC NxFxK NeVxK
3.67, .058 14.5, .000 4.43, .038 13.42, .000 23.28, .000 28.54, .000

F F N FxK
4.15, .045 10.31, .002 26.06, .000 17.29, .000

FiC FxV NxFxK
6.68, .011 4.36, .040 18.93, .000

NxVxC K NxK
3.51, .064 3.64, .059 5.94, .017

Std. Error .02069 .0420 .02062 .041 .01525 .0323
Std. Error I 7 .48454 .21234 .4762 .20728 .35714 .1633

Figure 16. Linear Models with Interactions
(100 Observations)
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equations given by the & models are given in figure 17.

Care should be taken when attempting to predict from

regression relationships which use the condition

number. If the sample size is less than 25, reasonable

results can not be guaranteed. The variability of the

sample condition number in the region studied was of

the order 1.OE+15 for the sample sizes of 10. In

summary, RMS errors are more accurately predicted than

MSE. Taken in pairs, the standard errors of the

estimates when normalized by their respective mean

estimates are always lower for RMS regressions than for

HSE regressions.

Figure 18. is a tabular comparison of the results

from the loglinear models. Note that these models

display slightly high adjusted r-squared values. Here

again, notice that the sample size is the most

significant independent vz-iable. In the second model

complexity is the second most significant independent

variable. The nonlinear models are slightly superior

to their linear counterparts, the standard errors

normalized by the log of the mean estimate are in all

cases lower than the linear models.

The regression study shows that for the

experimental region studied the errors due to sampling

in a factor loadings matrix can be reasonably predicted

by either linear models or nonlinear models.
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Dependent Var RiS RN MS

Independent Var N N N
V V V
F F F

C K

Nultiple R .77826 .81536 .78101

Adjusted R .77095 .80715 .77128

Overall F 106.464 9.355 00.245

Significance .000 .000 .000

Final Variables
in odel N N N
F Ratio, Signif 290.2, .000 341.9, .000 69.52, .000

V V V
21.79, .000 10.41, .002 22.27, .000

F F F
4.11, .046 5.96, .017 3.92, .054

C K
18.06, .000 1.13, .291

Std. Error .15778 .14478 .15767

Std. Error I In y -. 09737 -. 08934 -. 09730

Figure 18. Loglinoar Models
(100 Observations)
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Conclusions

A limited examination of Kaiser's criterion and

Catell's scree test indicates that Kaiser's criterion

is usually good to within a factor and was always, for

the structures and sample sizes addressed in this

report, no more than 3 factors from the true

dimensionality. In an ideal sampling situation

Catell's scree test seems to retain one too many

factors, and it is not always easy to identify the

scree line.

The concept of a complexity index appears to be

promising. If possible, a stronger upper bound needs

to be found for the first term of the index. The

possibility of unequal weights for the two terms could

be investigated through some further regression

studies.

The results of this research indicate that it is

reasonable to estimate an overall mean error due to

sampling for structures in the particular experimental

region addressed by this report.

This author believes that this report has

demonstrated that sample factor loadings matrices are

sensitive to sample size and, more importantly, the

structural complexity of a given population factor

loadings structure.

The author recommends future research which would
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address the sampling distribution of the complexity

Index.
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